Carmel International School, Posur

GRADE VIII SUB: PHYSICS

WORKSHEET

I. DEFINE THE FOLLOWING:

- 1. Intermolecular space
- 2. Intermolecular force
- 3. Force of cohesion
- 4. Force of adhesion
- 5. Latent heat of fusion
- 6. Latent heat of vaporisation
- 7. Mass
- 8. Volume
- 9. Density
- 10. Moment of force
- 11. Pressure
- 12. Kinetic energy
- 13. Potential energy
- 14. Energy

II. SHORT ANSWERS

- 1. What does the following statement mean
 - a. The specific latent heat of fusion of ice is $336 * 10^3$ J/kg.
 - b. The specific latent heat of vaporisation is $2260 * 10^3$ J/kg.
- 2. State the laws of floatation.
- 3. What are the factors affecting torque.
- 4. What are the factors affecting solid pressure.
- 5. What are the factors affecting liquid pressure.
- 6. What are the conditions for work done.
- 7. Compare work and power.
- 8. Complete the tabular column

	Solid	Liquid	Gas
Speed of Sound			
Heat Transfer			

III. LONG ANSWERS:

- 1. Explain kinetic theory of matter
- 2. With a neat diagram explain the change of state of matter with energy absorption or liberation.
- 3. What are the factors affecting density.
- 4. State the properties of liquid pressure
- 5. State the properties of atmospheric pressure.
- 6. With a neat diagram explain the construction and working of barometer.
- 7. With a neat diagram explain the construction and working of manometer.
- 8. Explain the classification of mechanical energy.
- 9. Complete the tabular column:

	Name of the Process	Heat absorbed or liberated	Examples
Solid to Liquid			
Liquid to Gas			
Solid to Gas			
Gas to Liquid			
Liquid to Solid			
Gas to Solid			

- 10. What are the energy transformations that occurs in the following
 - a. Photosynthesis
 - b. Charging a battery
 - c. Using a battery
 - d. Loudspeaker
 - e. Generator
 - f. Motor
 - g. Tube light
 - h. Electromagnet
 - i. Room heaters
 - j. Automobile engine

IV. WRITE THE FORMULA AND DERIVE THE UNIT FOR THE FOLLOWING

- 1. Density.
- 2. Relative density.
- 3. Torque.
- 4. Solid Pressure.
- 5. Liquid pressure.
- 6. Work done.
- 7. Potential energy.
- 8. Kinetic energy.

V. APPLICATION BASED QUESTIONS

- 1. Why does a ship float in water.
- 2. Why does ice berg float in sea.
- 3. Why does hydrogen balloon float in air.
- 4. Why walls of the dams are made thicker in the bottom.
- 5. Why submarines are built with thick walls.
- 6. Why bottle is kept at a height during blood transfusion.
- 7. How ink gets filled in the fountain pen.
- 8. How the medicine gets filled in the syringe.

VI. NUMERICAL

1. Complete the tabular column.

	Mass	Volume	Density in g/cm ³	Density in Kg/m ³	Relative Density	Float or sink in water
Object 1	500 g	50 m ³				
Object 2	4 kg		160 g/cm ³			

Object 3		160 cm ³	16 Kg/m ³	
Object 4	5 kg	500 cm ³		

- 2. A cubic wooden block, having length 1 cm each, exerts a pressure of 26000 Pa. If the cubic block is cut into half to form two rectangular blocks, what would be the pressure exerted by each of the blocks? Given that the force applied be the same.
- 3. An empty relative density bottle weighs 20 g. When completely filled with water it weighs 25 g. when filled with unknown liquid it weighs 88 g. Calculate the relative density and find the unknown liquid.

4. Complete the tabular column

	Mass	Displacement	Work done
Object 1	5 kg	500 cm	
Object 2	8000 g		160 J
Object 3		4 m	140 J
Object 4		600 cm	180 J

5. Complete the tabular column

	Mass	Velocity	Kinetic energy
Object 1	500 g	5 m/s	
Object 2		36 km/hr	500 J
Object 3	5000 g		1000 J

6. Complete the tabular column

	Mass	Height	Potential energy
Object 1	60 kg	600 cm	
Object 2	6000 g		300 J
Object 3		500 cm	500 J

7. Calculate power in the following cases

- a. Force = 50 N; Displacement = 300 cm; time = 2 minutes
- b. Force = 20 N; velocity = 20 m/s
- c. Mass = 4 kg; displacement = 500 cm; gravity = 10 m/s^2 ; Time = 2 min

8. A body of mass 'm' moving with velocity 'v' has Kinetic Energy 500 J. How will the Kinetic Energy change if

- a. Mass is halved and velocity is doubled
- b. Mass is doubled and velocity is halved.

9. A body of mass 'm' kept at height 'h' has Potential Energy 400 J. How will the Potential **Energy change if**

- a. Mass is halved and height is increased 4 times.
- b. Mass is doubled and height is doubled.

18. Eureka Can is based on.....principle

19. The substance will sink in water if

b. Archimedes

c. Newton

d. None of these

a. Galileo

- 10. Two objects of mass 200 g and 300 g are kept at heights 500 cm and 200 cm respectively. Find the ratio of the energy possessed by the objects.
- 11. A body having mass 'm' is moving at a velocity 'v'. if its velocity is increased 4 times and mass is halved then what will be its kinetic energy.
- 12. Two forces F1 = 30 N and F2 = 20 N is applied at two-point d1 = 4 m and d2 = 3 m respectively from the pivot. Which force will cause greater moment.
- 13. A stone of mass 4 kg displaced 200 ml of water when it was immersed in water. Calculate the

de	ensity and relative density			
VII.	CHOOSE THE BEST	ANSWER		
1. T	he ability of a body to do v	vork is called		
	a. Energy	b. Power	c. Force	d. Work
2. W	Vork is always done in the.	Of the application o	of force	
	 a. Opposite direction 		b. Same direction	
	c. Perpendicular directio		d. None of these	
3. W	Thich of the following unit	is used to measure the energy	in food industry	
	a. Electron volt	b. calories	c. Watt	d. Joules
4. W	Vater in a tap from overhea	d tank flows due to	potential energy	
	a. Gravitational b. Ele	ctrical c. Thermal d. No	one of these	
5. T	he S.I unit of power is			
	a. Watt	b. Joule	c. Pascal	d. Newton
6. T	he energy possessed in the	food is measured using		
	a. Calories	b. Joule	c. Kwh	d. eV
7. T	he product of force and vel	locity is		
	a. Work	b. Energy	c. Power	d. Pressure
8. If	the depth of the water inci	reases, the pressure		
	a. Increase	b. Remains constant	c. Decrease	d. Becomes zero
9. T	he unit of pressure used for	r meteorological purpose is		
	a. Torr	b. Bar	c. Pascal	d. None of these
10. W	Thich of the following devi	ce is used to measure the liqui	d pressure	
	a. Manometer	b. Thermometer	c. Barometer	d. Altimeter
11. C	Gas pressure exerted is dire	ctly proportional to		
	a. Mass	b. Volume	c. Density	d. None of these
12. T	he height of the mercury co	olumn at sea level is	·	
	a. 76 cm	b. 76 mm	c. 76 m	d. 760 cm
13. W	Then the surface area is qua	adrupled the pressure		
	a. Doubles	b. Halves	c. Remains same	d. none of these
14. A	ccording to which law or r	orinciple, "The pressure is exer		
	ansmitted equally in all dir		ī	1 /
	a. Newton's law	b. Archimedes principle	c. Pascal's law	d. Floatation law
15. If		more than that of the liquid in		
10.11	a. Float	b. Remains suspended	c. Sink	d. None of these
16 D		d at temperature	C. Sim	a. I tolle of these
10. D	a. 100°C	b.0 ⁰ C	$c.4^{0}C$	d. None of these
17 W		e derived physical quantity		
± / · · / ·	a. Density	b. Mass	c. Length	d. Height

a. R.D >1	b. R.D <1	c. $R.D = 1$	d. None of these
20. The pycnometer is the device	e used to measure the		
a. Pressure	b. Density of liquid	c. R.D of the liquid	d. none of these
21. Solid carbon dioxide is an ex	xample for		
a. Freezing	b. Melting	c. Deposition	d. sublimation
22. Latent heat of fusion results	in		
a. Melting of solid	b. freezing of liquid	c. both a & b	d. None of these
23. If intermolecular space incre	eases, then intermolecular force	e	
a. Decreases	b. increase	c. remains the same	d. none of these
24. Solids that can sublimate are	e		
a. Camphor	b. Iodine	c. Ice	d. both a &b
25. The mode of heat transfer th	at occurs in solid is		
a. Conduction	b. convection	c. radiation	d. all the above
26. Sound travels fastest in which	ch medium		
a. Solid	b. Liquid	c. Gas	d. None of these
27. When a matter is heated, the	Kinetic Energy of the particle	S	
a. Increases	b. Decreases	c. remains the same	d. None of these
28. 1 Newton = \dots dyne	_	a	
a. 10	b. 10^5	c. 10^7	d. 20
29. 1 Bar = Pascal	1 105	107	
a. 10	b. 10^5	$c.10^7$	d. 20
30. One joule of work done in o		1 1	1.1
a. 1 newton	b. 1 watt	c. 1 pascal	d.1 meter